
Least Time to the Rescue
Suran Warnakulasooriya

June 21, 2023

Abstract

The most efficient route that a lifeguard must take to rescue a drowning person is described

by the law of refraction. This law can be fittingly derived by finding the horizontal distance from

the initial position of the lifeguard to the boundary between the two mediums that minimizes

the time taken. Using realistic values for how far away the lifeguard is from their target and

their speeds on sand and in water, we can find realistic jump points to run to and angles to

head in any situation. From there, we find that the difference between the optimal path and

straight path is only significant when the target is close to the waterfront but far from the

lifeguard. In this scenario, the difference between times approaches a minute, making it crucial

for a lifeguard to know to take the optimal path in this situation.

1 Introduction

In the second century CE, Ptolemy attempted to find an empirical relationship between the

angles of refraction, but could only approximate for small angles. In 984, the Persian scientist

Ibn Sahl studied Ptolemy’s work and found a more concrete geometrical relationship between

the angles. In 1621, the Dutch astronomer Willebrord Snellius used conservation of momentum

to relate the angles using their sines, creating what we now know as the Snell’s law. Pierre

de Fermat later proved the same relationship using differential calculus and the principle of

least time: that light travels along the most time-efficient path between two given points. In his

lectures on physics*, Richard Feynman analogized the behavior of light as a lifeguard taking

the most efficient route from the beach to rescue a drowning person in the sea. It is from this

analogy between light and the lifeguard that we begin to find the lifeguard’s path.

2 Finding the Optimal Path

The lifeguard’s path consists of two segments that span across three points. The lifeguard must

run from their initial position (L) to the optimal jump point (J) at the waterfront; from there,

they must swim to the target at position (D). The optimal path from L to D can be described

by a single value: x, the horizontal distance between L and J. Since the optimal path is the

path that takes the least time, we need to find an x that minimizes T, the time taken to tra-

verse the path; x depends on five variables: the vertical distance between L and J (ds), the

vertical distance between J and D (dw), the total horizontal distance between the L and D (l),

the lifeguard’s speed on sand (vs), and the lifeguard’s speed in water (vw). Additionally, the

angle between the lifeguard’s trajectory to J and the vertical at J (θs) and the angle between the

lifeguard’s trajectory from J and the vertical at J (θw) can be calculated (see Figure 1).

*QED: The Strange Theory of Light and Matter, 1985.

2

J

ds

dw

L

D

J′
y

vs

vw

x
l

θw

θs

b

b

b b

Figure 1: The lifeguard’s path to the target along with the variables used in the computation. The path that

minimizes time is the trajectory LJD. The straight path is LJ′D.

Some logical constraints can be applied in this situation. For example, x ≤ l since the

lifeguard cannot run past the target. Also, x will only equal l when x = l = 0. Since hu-

mans always run faster than they swim, vs > vw. For a fit but average lifeguard, we will use

vs = 2.7 m/s* and vw = 0.9 m/s†. Lifeguards are usually perched no farther than 10m from

the waterfront‡, so 0m ≤ ds ≤ 10m. Lifeguards also must be able to swim up to 500m without

assistance or stopping‡, so 0m ≤ dw ≤ 500m. A lifeguard generally covers 300m of the water-

front‡mass.gov, meaning 150m in one direction. Since our model is symmetrical, we only need

to consider one side, so 0m ≤ l ≤ 150m.

The time T taken to traverse a given path is the sum of the time spent on sand and the time

spent in water. Therefore,

T =
LJ

vs
+

JD

vw
. (1)

LJ and JD can be expressed in terms of ds, dw, l, and x using the Pythagorean theorem, yielding

T =

√

d2
s + x2

vs
+

√

d2
w + (l − x)2

vw
. (2)

Since we want to find an x that minimizes T, we need to take the derivative of T with respect

to x and set the derivative to 0.

*proudtorun.org/average-human-running-speed
†ukfitnessevents.co.uk/swimming/what-is-the-average-swimming-speed
‡mass.gov/forms/pool-waterfront-safety-interest-form

3

dT

dx
=

x

vs

√

d2
s + x2

−
l − x

vw

√

d2
w + (l − x)2

= 0. (3)

From the Pythagoras theorem, we note that x√
d2

s+x2
= sin θs and l−x√

d2
w+(l−x)2

= sin θw, so the

derivative can be rewritten as

dT

dx
=

sin θs

vs
−

sin θw

vw
= 0. (4)

This substitution leads us to a proof of Snell’s law (5), which relates the velocities and angles in

different mediums when light refracts through them, since, like the lifeguard, light obeys the

principle of least time.

sin θs

vs
=

sin θw

vw
. (5)

The fact that the x that satisfies (3) actually minimizes T can be validated by taking the

derivative of (3) with respect to x. This results in,

d2T

dx2
=

1

vs
(

d2
s + x2

)
1
2

−
x2

vs
(

d2
s + x2

)
3
2

+
1

vw
(

d2
w + (l − x)2

)
1
2

−
(l − x)2

vw
(

d2
w + (l − x)2

)
3
2

.

Since the first term on the right hand side is greater than the second term (the reason be-

ing d2
s + x2

> x2), and that the third term is greater than the fourth term (the reason being

d2
w + (l − x)2

> (l − x)2), the sum of the terms on the right are positive. Therefore, d2 T
dx2 > 0,

which validates that the x that satisfies (3) actually minimizes T.

Returning to our quest to find x, rearranging (3) gives us

x

vs

√

d2
s + x2

=
l − x

vw

√

d2
w + (l − x)2

. (6)

After squaring both sides and following through with many algebraic steps, we get the follow-

ing quartic equation for x,

(

l − v2
)

x4 − 2l
(

1 − v2
)

x3 +
(

d2
s − v2d2

w + l2(1 − v2)
)

x2 − 2ld2
s x + l2d2

s = 0, (7)

where v = vw
vs

(this substitution is made since we find the ratio vw
vs

often in the computational

steps). We note that v < 1 since vs > vw. Being a quartic equation, (7) has four solutions. To

find the optimal x out of the four solutions, we need to consider only real positive x values.

Since the lifeguard travels slower in water, they will always refract towards the normal when

transitioning from sand to water, meaning they will cover less horizontal distance in water than

4

on sand. Since the lifeguard travels more horizontal distance on sand x ≥ l
2 . The lifeguard also

cannot go past l, so l
2 ≤ x ≤ l. If there are multiple valid x values, we need to run a candidate

test to see which x produces the lowest T.

It helps to compare T with the time to go from L to D using a straight path (the dotted line

in Figure (1)). Labeling the time it takes for the lifeguard along the straight path as T′ and the

horizontal distance to the jump point (J′) as y, it follows that

T′ =

√

d2
s + y2

vs
+

√

d2
w + (l − y)2

vw
. (8)

From the geometry in Figure (1) we obtain that ds/y = dw/(l − y), from which we find that

y = lds/(ds + dw). (9)

This value for y can then be substituted in (8) to find T′.

A code in Python was written to solve for (7) and (9) and to find the values of T and T′

using (2) and (8) under varying conditions.* For example, Figure 2 shows the difference in

times between optimal and straight paths for varying l for fixed ds and dw. Figure 3 shows the

variation in angles θs and θw for the same conditions as in Figure 2. Figure 4 shows a heatmap

showing the time difference between the optimal and straight paths when l and dw are varied

for fixed ds. As can be seen from the heatmap, taking the optimal path instead of the straight

path matters most with a high l and low dw, since the lifeguard can choose to run faster on the

sand next to the waterfront and swim a short distance instead of swimming almost the entire

way, saving nearly a minute of critical time.

*To access the code in GitHub, please visit suranw.net. The code for generating the heatmap and for creating an

interactive simulation is also given in section 3 of this paper.

5

0 20 40 60 80 100 120 140
l (m)

0

10

20

30

40

50

∆T
 (s

)

Difference Between Times for Optimal Path and Straight Path
ds = 10m, dw = 50m

Figure 2: A graph showing the effect that increasing l has on ∆T. As l increases, the straight path covers

more water while the optimal path runs nearly horizontally across the sand before covering a short dis-

tance in water. The difference in speeds on sand and in water leads to a seemingly exponential increasing

difference in times with more horizontal distance.

6

0 20 40 60 80 100 120 140
l (m)

0

20

40

60

80

An
gl

e
(°

)

Effect of Horizontal Distance on Angles of Refraction
ds = 10m, dw = 50m

θs
θw

Figure 3: A graph showing the effect that increasing l has on θs and θw. As l increases, the part of the

optimal path that is on sand (from L to J) approximates a horizontal line, so θs begins to approximate a

right angle. Since ds and dw are kept constant, θw approximates a certain angle, 20° in this case, to cover the

segment in water as θs approximates 90°.

7

0 20 40 60 80 100 120 140

l (m)

0

20

40

60

80

100

120

140

160

180

200

220

240

d w
 (m

)
Difference Between T and Tʼ

ds = 10 m

0

5

10

15

20

25

30

35

40

45

50

55

∆T
 (s

)

Figure 4: A heatmap showing the difference between the time (T) to traverse the optimal path and the

time (T′) to traverse the straight path. Here the lifeguard is at a distance of ds = 10m from the waterfront.

When dw = 0m, the target is on the waterfront and the lifeguard’s path is entirely on sand, making both

times equal and their difference 0s (this is a non-drowning scenario). When l = 0m, the target is directly

in front of the lifeguard so the optimal path is again the same as the straight path, making the difference

0s. Lifeguards are supposed to swim up to dw = 500m, but the difference between times is no more than 5s

when dw > 250m. Taking the optimal path instead of the straight path matters most with a high l and low

dw, since the lifeguard can choose to run faster on the sand next to the waterfront and swim a short distance

instead of swimming almost the entire way, saving nearly a minute of time.

8

3 Code

3.1 For Generating the Heatmap

1 from sympy.solvers import solve # solve quartic equation for x

2 from sympy import Symbol # symbol class for the library to recognise x

3 from math import atan, pi # arctan to find the angles and pi to

֒→ convert to degrees

4 import matplotlib.pyplot as plt

5

6 x = Symbol(’x’) # horizontal distance the lifeguard must travel before

֒→ entering the water

7 Vs, Vw = 2.7, 0.9 # speed in sand and speed in water (m/s)

8

9 Ds = 10 # distance (m) from the lifeguard to the beach (0 <= Ds <= 10)

10 Dw = 0 # distance (m) from the beach to the target (0 <= Dw <= 500)

11 l = 0 # total horizontal distance (m) between the lifeguard and target

֒→ (0 <= l <= 150)

12

13 def find_T(x,Hs,Hw,l): # find the time required to traverse a given

֒→ path specified by x, Hs, Hw, and l

14 return (((Hs**2)+(x**2))**0.5)/Vs + (((Hw**2)+((l-x)**2))**0.5)/

֒→ Vw

15

16 def calculate(l,Hs,Hw,Vs,Vw): # with given values, find x, the angles

֒→ of refraction, time to traverse the refracted path, and time to

֒→ traverse the straight path

17 V = Vw/Vs # the ratio between the speeds occurs often within the

֒→ quartic equation for x, so it is calculated once

֒→ separately

18 # use sympy.solvers to solve the quartic equation for x

19 S = solve((x**4)*(1-V**2) - 2*l*(x**3)*(1-V**2) + (x**2)*(Hs

֒→ **2-(V**2)*(Hw**2)+(l**2)*(1-V**2)) - 2*l*(Hs**2)*x + (Hs

֒→ **2)*(l**2), x)

20 # solve can yield multiple real positive solutions so a

֒→ candidate test is needed

21 best_T = 9e18 # set a ludicrously high best time so that it is

֒→ guaranteed to be reduced

22 best_x = 0 # set a throwaway best x candidate

23 for s in S: # for each candidate solution s in the list of

֒→ solutions ...

24 try:

25 float(s)

26 if s >= 0: # check if s is a real positive number

27 candidate_T = find_T(s,Hs,Hw,l) # find the

֒→ time using the candidate s

9

28 if candidate_T < best_T: # set the best time

֒→ and best x if the candidate s yields a

֒→ faster time than the current best

29 best_T = candidate_T

30 best_x = s

31 except: pass

32

33 y = (Hs*l)/(Hs+Hw)

34 if best_T != 9e18: # if there was a valid solution, best_T would

֒→ be set to something other than 9e18, so if it is not 9

֒→ e18, a valid solution was found

35 try:

36 X = best_x; T = best_T; theta_s = atan(X/Hs)*180/pi;

֒→ theta_w = atan((l-X)/Hw)*180/pi # find the

֒→ angles that the lifeguard enters and leaves

֒→ the beach from the normal in degrees

37 T_prime = find_T(y,Hs,Hw,l) # find the time to

֒→ traverse the straight path

38 return round(X,3), round(theta_s,3), round(theta_w

֒→ ,3), round(T,3), round(T_prime,3)

39 except: pass

40

41 return None, None, None, None, None # if best_T is still 9e18,

֒→ then no valid solutions were found

42

43 ind = []

44 dep1 = []

45 dep2 = []

46

47 dwr = 250

48 lr = 150

49

50 h = [0 for _ in range(0,lr+5,5)]

51 heatmap = [h]

52

53 from random import randint

54

55 for Dw in range(5,dwr+5,5): # loop through various total horizontal

֒→ distances

56 heatmap.append([0])

57 for l in range(5,lr+5,5):

58 _x, _theta_s, _theta_w, t, t_prime = calculate(l,Ds,Dw,Vs,

֒→ Vw) # calculate values with the given l

59 if _x != None and t != None and t_prime != None: # if the

֒→ distance was valid

60 delta = round(float(t_prime-t),3)

10

61 print(delta)

62 heatmap[-1].append(delta)

63 else:

64 heatmap[-1].append(0)

65

66 print()

67

68 # choose whether to display both the optimal and straight paths (

֒→ comparison) or just their difference (delta)

69 display = ’delta’ # comparison or delta

70

71 # set up the plot for the given setting

72 if display == ’comparison’:

73 plt.ylabel(’Time (s)’)

74 plt.title(’Times for Optimal Path and Straight-Line Path\nd_{s} =

֒→ {0} ft , Dw = {Dw} ft’,fontsize=40)

75 plt.plot(ind,dep1,label=’$T_{Optimal}$’)

76 plt.plot(ind,dep2,label=’$T_{Straight}$’)

77 elif display == ’delta’:

78 plt.title(’Difference Between T and T_Prime\nd_{s} = 10 m’,

֒→ fontsize=30)

79 import seaborn as sns

80 print(len(heatmap))

81 print(len(heatmap[0]))

82 print(len(heatmap[-1]))

83 sns.set_context("paper", font_scale=2.5)

84 ax = sns.heatmap(heatmap,square=True,cbar_kws={’label’:’DeltaT (

֒→ s)’,’ticks’:[i for i in range(0,60,5)],’shrink’:1})

85 ax.set_xlabel(’l (m)’,fontsize=30)

86 ax.set_ylabel(’d_{w} (m)’,fontsize=30)

87 ax.set_xticks([4*i+1 for i in range((lr+20)//20)])

88 ax.set_yticks([4*i+1 for i in range((dwr+20)//20)])

89 ax.set_xticklabels([i for i in range(0,lr+10,20)],fontsize=20)

90 ax.set_yticklabels([i for i in range(0,dwr+10,20)],fontsize=20)

91 ax.xaxis.tick_top()

92

93 plt.show()

94 plt.clf()

95 plt.close()

11

3.2 For the Simulation

1

2 import pygame

3 from sympy.solvers import solve # solve quartic equation for x

4 from sympy import Symbol # symbol class for the library to recognise x

5 from math import atan, pi # arctan to find the angles and pi to

֒→ convert to degrees

6 from os import path

7

8 x = Symbol(’x’) # horizontal distance the lifeguard must travel before

֒→ entering the water

9 X = 0

10 Vs, Vw = 2.7, 0.9 # speed in sand and speed in water (m/s)

11

12 Ds = 30 # distance (m) from the lifeguard to the beach (0 <= Ds <= 30)

13 Dw = 150 # distance (m) from the beach to the target (0 <= Dw <= 300)

14 l = 0 # total horizontal distance (m) between the lifeguard and target

15

16 def find_T(x,Hs,Hw,l): # find the time required to traverse a given

֒→ path specified by x, Hs, Hw, and l

17 return (((Hs**2)+(x**2))**0.5)/Vs + (((Hw**2)+((l-x)**2))**0.5)/

֒→ Vw

18

19 def calculate(l,Hs,Hw,Vs,Vw): # with given values, find x, the angles

֒→ of refraction, time to traverse the refracted path, and time to

֒→ traverse the straight path

20 V = Vw/Vs # the ratio between the speeds occurs often within the

֒→ quartic equation for x, so it is calculated once separately

21 # use sympy.solvers to solve the quartic equation for x

22 S = solve((x**4)*(1-V**2) - 2*l*(x**3)*(1-V**2) + (x**2)*(Hs**2-(V

֒→ **2)*(Hw**2)+(l**2)*(1-V**2)) - 2*l*(Hs**2)*x + (Hs**2)*(l

֒→ **2), x)

23 # solve can yield multiple real positive solutions so a candidate

֒→ test is needed

24 best_T = 9e18 # set a ludicrously high best time so that it is

֒→ guaranteed to be reduced

25 best_x = 0 # set a throwaway best x candidate

26 for s in S: # for each candidate solution s in the list of

֒→ solutions ...

27 try:

28 float(s)

29 if s >= 0: # check if s is a real positive number

30 candidate_T = find_T(s,Hs,Hw,l) # find the time using the

֒→ candidate s

31 if candidate_T < best_T: # set the best time and best x if

֒→ the candidate s yields a faster time than the

12

֒→ current best

32 best_T = candidate_T

33 best_x = s

34 except: pass

35

36 y = (Hs*l)/(Hs+Hw) # find horizontal distance to the beach if the

֒→ path was straight

37 if best_T != 9e18: # if there was a valid solution, best_T would be

֒→ set to something other than 9e18, so if it is not 9e18, a

֒→ valid solution was found

38 try:

39

40 X = best_x; T = best_T; theta_s = atan(X/Hs)*180/pi; theta_w

֒→ = atan((l-X)/Hw)*180/pi # find the angles that the

֒→ lifeguard enters and leaves the beach from the normal

֒→ in degrees

41 T_prime = find_T(y,Hs,Hw,l) # find the time to traverse the

֒→ straight path

42 return round(X,3), round(y,3), round(theta_s,3), round(

֒→ theta_w,3), round(T,3), round(T_prime,3)

43 except: pass

44

45 return None, y, None, None, None, None # if best_T is still 9e18,

֒→ then no valid solutions were found

46

47 color_lookup = [

48 ’#282c34’, # background

49 ’#c678dd’, # purple

50 ’#98c379’, # green

51 ’#e06c75’, # red

52 ’#61afef’, # blue

53 ’#d19a66’, # orange

54 ’#56b6c2’, # teal

55 ’#e5c07b’, # yellow

56 ’#abb2bf’, # white

57 ’#20242d’] # hud

58

59

60 pygame.init()

61 pygame.font.init()

62 p = 4 # unit pixel size

63

64 dir = path.dirname(path.realpath(__file__))

65 font = pygame.font.Font(f’{dir}/font.ttf’,p*2)

66

67 ms = 10

13

68 mw = 500

69

70 B = 4 # horizontal pad on left

71 C = 4 # vertical pad

72 h = ms*p + mw*p + (2*C+1)*p # 30 m sand + 150 m water + 2 m padding

73 w = 150*p + (2*B+1)*p # 150m + Bm left padding + 1m right padding

74 screen = pygame.display.set_mode((w,h))

75 pygame.display.set_caption(f’Ds : {Ds} , Dw : {Dw}’)

76

77 X, Y, _theta_s, _theta_w, T, T_prime = calculate(l,Ds,Dw,Vs,Vw)

78

79 while __name__ == ’__main__’:

80 screen.fill(color_lookup[9])

81 pygame.draw.rect(screen, color_lookup[7], (p,p,(150+2*B-1)*p,(ms+C)

֒→ *p))

82 pygame.draw.rect(screen, color_lookup[4], (p,(ms+C)*p,(150+2*B-1)*p

֒→ ,(mw+C)*p))

83 change = False

84

85 for event in pygame.event.get():

86 if event.type == pygame.QUIT: exit()

87 keys = pygame.key.get_pressed()

88 if keys[pygame.K_ESCAPE]: exit()

89 elif keys[pygame.K_w]: Ds += 1; change = True

90 elif keys[pygame.K_s]: Ds -= 1; change = True

91 elif keys[pygame.K_UP]: Dw -= 1; change = True

92 elif keys[pygame.K_DOWN]: Dw += 1; change = True

93 elif keys[pygame.K_LEFT]: l -= 1; change = True

94 elif keys[pygame.K_RIGHT]: l += 1; change = True

95

96 pos = pygame.mouse.get_pos()

97 if pygame.mouse.get_pressed()[0]:

98 pygame.time.delay(60)

99 l = (pos[0]- p*(B + 1))//p

100 Dw = (pos[1]- p*(ms + 1 + C))//p

101 change = True

102

103 Ds = max(min(ms,Ds),0)

104 Dw = max(min(mw,Dw),0)

105 l = max(min(150,l),0)

106 pygame.draw.circle(screen, color_lookup[0], (p*B,p*(ms+C-Ds)), 10)

֒→ # lifegaurd

107 pygame.draw.circle(screen, color_lookup[0], (p*(B+l),p*(ms+C+Dw)),

֒→ 10) # target

108

109 jp_color = color_lookup[0]

14

110 if change:

111 _x, Y, _theta_s, _theta_w, t, t_prime = calculate(l,Ds,Dw,Vs,Vw)

֒→ # calculate values with the given l

112 # somtimes solve does not return valid solutions for l values

֒→ that should have a solution, those l values are skipped

113 if _x != None: # if the distance was valid

114 X = _x

115 T = t

116 T_prime = t_prime

117 elif _x == None or not float(_x): jp_color = color_lookup[3]

118

119

120 pygame.draw.circle(screen, color_lookup[0], (p*(B+X), p*(ms+C)),

֒→ 10) # jump point

121 pygame.draw.circle(screen, color_lookup[0], (p*(B+Y), p*(ms+C)),

֒→ 10) # straight point

122

123 pygame.draw.line(screen, color_lookup[0], (p*B,p*(ms+C-Ds)), (p*(B+

֒→ X),p*(ms+C))) # lifeguard to jump point

124 pygame.draw.line(screen, color_lookup[0], (p*(B+X),p*(ms+C)), (p*(B

֒→ +l),p*(ms+C+Dw))) # jump point to target

125

126 pygame.draw.line(screen, color_lookup[3], (p*B,p*(ms+C-Ds)), (p*(B+

֒→ Y),p*(ms+C))) # lifeguard to straight point

127 pygame.draw.line(screen, color_lookup[3], (p*(B+Y),p*(ms+C)), (p*(B

֒→ +l),p*(ms+C+Dw))) # straight point to target

128

129 pygame.display.set_caption(f’Ds : {Ds} , Dw : {Dw}, l : {l},

֒→ optimal time : {T} , straight time : {T_prime} , ?T : {round

֒→ (T_prime-T,2)}’)

130 pygame.display.update()

	Introduction
	Finding the Optimal Path
	Code
	For Generating the Heatmap
	For the Simulation

