
A Brute Force Algorithm for

Hamiltonian Cycles in Square Grids

Suran Warnakulasooriya

Contents

1 Introduction 2
1.1 The Königsberg Bridges . 2

1.2 Eulerian & Hamiltonian Cycles . 2

1.3 Number of Directed Graphs . 4

1.4 Time Complexity . 6

2 Pseudocode for Hamiltonian Cycles 7
2.1 Why We Use Pseudocode . 7

2.2 Fallback & Initialization . 7

2.3 Sub-Functions . 9

2.4 HamSquares Function . 16

2.5 Results for the 2× 2 Grid . 31

2.6 Results for the 4× 4 Grid . 31

Abstract: Within a grid comprised of links and nodes arranged as a square matrix, paths can
be made that traverse every node exactly once. These are Hamiltonian paths. Paths that end
where they begin are cycles. Square grids with an odd number of nodes on each side do not
possess Hamiltonian cycles. A brute force algorithm to find Hamiltonian cycles in square grids
with an even number of nodes on each side is presented in this paper. By finding the number
of neighbors per node, we can find all combinations of one to one linkages between nodes. The
algorithm then traverses every path and logs the nodes it has reached. If every node in the list of
visited nodes is unique and the path ends where it began, then the path is a Hamiltonian cycle.
Once found, the cycles are listed and plotted. Using the algorithm, we find that a 2× 2 grid
posses only 1 unique Hamiltonian cycle and a 4× 4 grid has 6. The algorithm would take over 90

years to compute Hamiltonian cycles for a 6× 6 grid or greater. Therefore, finding Hamiltonian
cycles with the brute force method takes exponential time and is practically infeasible when the
side length has six or more nodes.

August 12, 2020

1 INTRODUCTION 2

1 Introduction

1.1 The Königsberg Bridges

In the southwest corner of the Baltic Sea, nested between Poland and Lithuania, is the Russian
exclave of Kaliningrad. In the 13th century, it was under Prussian rule and had the name of
Königsberg. Here, the two islands Kneiphof and Lomse are connected to each other and the
mainland via seven bridges (Figure 1). A challenge arose involving these bridges: is it possible to
create a path that crosses each bridge exactly once? Reaching an island or mainland bank other
than via a bridge or accessing any bridge without crossing to its other end is forbidden. The
story of Hamiltonian cycles starts with the problem of Königsberg’s seven bridges.

Figure 1: Euler’s sketch of the Königsberg bridges (From Wikimedia Commons).

1.2 Eulerian & Hamiltonian Cycles

The Königsberg bridge problem was solved by Leonhard Euler in 1736, who accomplished a mul-
titude of mathematical feats throughout his lifetime. He was the first to denote a function with
the notation f (x). Euler proved that the Königsberg bridge problem has no solutions. His proof
required the spearheading of a new form of mathematics, named graph theory. Graph theory is
the study of structures comprised of nodes (also called vertices or points) which are connected
by links (also called lines or edges). We will use the terms node and link throughout this paper.
With the terminology defined, Euler managed to simplify the banks and islands to four nodes,
and the bridges to seven links (Figure 2). With the graph created, Euler proved that there is no
path that crosses each bridge once. A solvable bridge problem would have at least one Eulerian
path: a path that traverses every link exactly once.

Euler defined two types of graph: directed and undirected (Figure 2 falls under the latter). A
graph is undirected if every link can be accessed from either node. Directed graphs have at least
one link that can be accessed via only one of their nodes. The degree of a node is the num-
ber of links connecting to that node. Euler also defined the notion of connectedness: a graph
is connected if it is self-contained, with no nodes or links being disconnected. Figure 3 is an
example of a disconnected graph, with 3 self-contained systems. In the case of Figure 3, each
self-contained graph is referred to as a component or subgraph, while the full figure is simply
the graph or supergraph. Of course, if there are multiple components within the supergraph,

1.2 EULERIAN & HAMILTONIAN CYCLES 3

Figure 2: The Königsberg bridges when reduced to nodes and links.

Figure 3: A disconnected graph: the three subgraphs are individual components while the full figure is the
supergraph.

then Eulerian cycles do not exist, since regardless of which component we start on, we will not
be able to traverse every other link. The graph depicted in Figure 2 is the supergraph, with a
single component, so Eulerian paths are not immediately impossible.

In the case of the Königsberg bridges, the only links present are the bridges, so the nodes (land-
masses) can only be accessed via a bridge. Euler observed that assuming the node is not at the
beginning or end of the path, the number of times a landmass is entered and exited are equal. In
order for each link to be traversed, every non-terminal node must have a nonzero even degree.
There can be at most 2 nodes of odd degree for an Eulerian path to still exist, those nodes being
the start and/or the end. All four landmasses have odd degree, and so Euler declared that no
Eulerian paths exist in the problem of Königsberg’s seven bridges.

Euler’s solution to the bridge problem is considered as the first theorem of graph theory. Euler’s
lack of concern for the exact position of the nodes and attention to the links between them laid
the groundwork for the mathematical branch of topology, which famously disregards the rigid
shape of figures and focuses on the flow between the vertices.

1.3 NUMBER OF DIRECTED GRAPHS 4

Over a century later, in 1857, another graph theory-related question arose. It was a game invented
by the Irish mathematician William Rowan Hamilton. He dubbed it the icosian game: a challenge
to find a Hamiltonian cycle along the edges of a dodecahedron. A Hamiltonian path is quite
similar to an Eulerian path, the only difference being that a Hamiltonian path must reach every
node exactly once, regardless of how many times a link is crossed. A Hamiltonian cycle is simply
a Hamiltonian path that ends where it starts.

1.3 Number of Directed Graphs

In this paper, we will write a brute force algorithm to compute and generate Hamiltonian cycles
in a square grid, finding all possible directed graphs in a grid formatted as an m × m matrix.
After finding these graphs, we must traverse them for m2 steps to verify which of them are
Hamiltonian cycles. To find the number of directed graphs, we must consider that each node has
a certain number of neighbors. Any node in the grid can be one of three types: a corner, an edge,
or a center. Corners, being blocked off in two directions, have two neighbors. Edges, blocked
off in one direction, have three neighbors. And centers are not blocked off in any direction, and
therefore have four neighbors.

Let’s look at the mathematical functions Co(m), Ed(m), and Ce(m). These functions represent the
number of corners, edges, or centers, respectively, in a square grid of side length m. With this
background, we can make the following statement with ease:

Co(m) = Ed(m) = Ce(m) = 0, m < 2.

If m = 1 then the single node in the grid fits none of the definitions of corner, edge, or center.
And if m < 1, there is no grid at all. Now let’s assume that m ≥ 2. In this case there will always
be 4 corners. An m × m square grid has 4 sides, each side having m nodes. Each side has 2

corners, so the number of edges per side is m− 2; therefore, the number of edges in the whole
grid is 4(m− 2). Since this is a square grid, the number of centers will be a perfect square. The
side length of the portion of the grid that contains the centers is m − 2, so there are (m − 2)2

centers (see Figure 4). So if m ≥ 2:

Co(m) = 4,

Ed(m) = 4(m− 2),

Ce(m) = (m− 2)2.

Then the number of possible directed graphs, G(m), in a grid of side length m is given by

G(m) = 2Co(m) · 3Ed(m) · 4Ce(m)

1.3 NUMBER OF DIRECTED GRAPHS 5

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4: The corners, edges, and centers in a 4× 4 grid. Corners, edges, and centers are marked
green, blue, and yellow, respectively.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5: An instance of a 4× 4 grid where every node is linked to only one neighbor.

The m×m directed graphs we will create will link every node to exactly one of their neighbors
(Figure 5 is an example). This differs from a standard m×m grid, which links every node to each
of their neighbors (Figure 6).

The total number of directed graphs given by the above expression for m values 2 through 6 is
shown below.

m G(m)

2 16

3 5,184

4 26,873,856

5 2,229,025,112,064

6 2,958,148,142,320,582,656

1.4 TIME COMPLEXITY 6

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 6: A standard 4× 4 grid where every node is linked to every neighbor. This is in essence,
the input grid for the algorithm. There are no diagonal links.

Since we are using m = 4 as an example throughout the majority of this paper, we will have to
verify which out of the 26,873,856 paths are Hamiltonian cycles. This algorithm, in essence, cre-
ates every possible m×m directed graph there is, where every node links to exactly one neighbor,
and then follows each graph for m2 steps to verify if it is a Hamiltonian cycle.

An observation to be made here is that any square grid with an odd side length will have an
odd number of nodes. A Hamiltonian cycle can be viewed as a path that leaves from a certain
node and eventually returns to it after visiting every other node once. If the grid has an even
side length, every move in a certain direction will have a corresponding move in the opposite
direction. So for every move, there is an equal and opposite move that can be made without
visiting some other node twice. A grid being odd entails that there will be a move that does
not have an inverse that can be made without revisiting a node. Attempting to find Hamiltonian
cycles in an odd grid therefore results in at best one node that must be reached via revisiting
some other node. With this insight, we can come to the conclusion that square grids with an odd
side length to not posses any Hamiltonian cycles.

1.4 Time Complexity

The time it takes to find G(m) directed graphs is O(G(m)), where O is the Big O notation. For
every directed graph we create, we must follow it for m2 steps to verify if it is a Hamiltonian
cycle. We take m2 steps because an m× m matrix contains m2 nodes, and a Hamiltonian cycle
traverses every node. Therefore, the time it takes to verify each path is O(m2).

Suppose that G(m) · m2 = V(m). V(m) is now the number of moves needed to verify all G(m)
graphs. The total verification time therefore becomes

O(G(m) ·m2) = O(V(m)).

2 PSEUDOCODE FOR HAMILTONIAN CYCLES 7

Figure 7: How G(m) and V(m) scale with m.

Creating and verifying G(m) paths take the majority of our algorithm’s runtime. As shown in
Figure 7, G(m) and V(m) scale exponentially. Let’s assume we are using a machine that can
compute a path in one billionth of a second and also verify a path in one billionth of a second. If
m = 6, it will take over 90 years to find every path through the square grid, and it will take over
3 millennia to verify all of them. Therefore, finding Hamiltonian cycles in a square grid of 6× 6
or larger by this brute force method is not feasible.

2 Pseudocode for Hamiltonian Cycles

2.1 Why We Use Pseudocode

Regardless of what language we ultimately use, the logic of the program must be well-defined
and should remain consistent across languages. This section will cover the Python code in En-
glish form and will be aided by flowcharts, diagrams, and snippets of the Python shell. We will
refer to a Hamiltonian cycle as a hamcycle for brevity.

2.2 Fallback & Initialization

The major function of the program is named HamSquares, since we are finding hamcycles in
a square grid. HamSquares requires the use of two built-in Python libraries: itertools for
finding every possible path, and matplotlib.pylot to plot the hamcycles once they are found.

Most functions take in a number of arguments and perform processes involving those arguments.
In most cases the arguments must be of a specific type or else the function will not be able to

2.2 FALLBACK & INITIALIZATION 8

operate on them correctly. The HamSquares function takes in a single argument, m, which is
the side length of the square grid in which the hamcycles must be found. The processes within
HamSquares can only operate without error when m is an integer, so we must check if m is
indeed an integer.

If m is an integer, the function will check if m is odd or less than 1. Square grids with an odd side
length does not possess hamycles, and grids with side lengths less than 2 cannot be traversed.
So, if m < 1 or if the division of m and 2 leaves a remainder of 1, then the function terminates
and returns None. If m is a positive even, the function continues. If m is a string of an integer,
then it will be converted into numeric form and the function continues. If m cannot be converted
into numeric form, the function terminates and returns None.

Examples of arguments accepted by HamSquares:

2, ”4”.

Examples of arguments rejected by HamSquares (i.e., the function immediately returns None):

”hello”, 0,−1, 7, [1, 2, 3].

Try int(m).

Yes

Convert m to an
integer

No return None

Is m a
positive even?

Yes

Continue

No return None

Get m

Figure 8: The fallback portion of HamSquares as a flowchart.

As an example, we will assume that we are calling HamSquares on the integer 4 (i.e., m = 4).
This will pass through the fallback portion without any returns. The first variable is our currently

2.3 SUB-FUNCTIONS 9

empty grid, which we will name grid. To populate grid, we create a list n of natural numbers
up to m2. We then create a new empty list tempRow. tempRow is the current row in the grid.
Using a for loop, we append the next element in n to tempRow. If this element is a multiple
of m, the contents of tempRow will be appended to grid as a list and tempRow will be cleared,
since if the element in n is a multiple of m then we are at the end of that row. Once this process
is over, tempRow is empty and will not be used again. grid is now a list of lists, where each
sublist is a row and an index in a row is a column. Since this is a square grid, the length of each
row (columns per row) and the number of rows will be both equal to m.

>>> n
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
>>> grid
[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

It is difficult to visualize how we can traverse a list of lists when it is formatted in a straight
line. The solution to this problem, among many others, is why we will define multiple smaller
functions to be used by HamSquares.

2.3 Sub-Functions

We need a way to display grid in the form of a grid, not a line. For that we define our first
sub-function, display, which takes a single list as its argument. The list does not need to be a
list of lists for display to work. display simply prints each element in the list one at a time.
Since the elements in grid are the rows, which are lists of their own, display will print each
row one at a time (see Figure 9 for the flowchart).

>>> display([1,2,3,4])
1
2
3
4
>>> display(grid)
[1,2,3,4]
[5,6,7,8]
[9,10,11,12]
[13,14,15,16]

In essence, grid transforms from a list such as

[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]

to

2.3 SUB-FUNCTIONS 10

[[1 , 2 , 3 , 4] ,
[5 , 6 , 7 , 8] ,
[9 , 10 , 11 , 12] ,
[13 , 14 , 15 , 16]].

This layout is identical to Figure 6, and we will substitute displaying grid with this figure for
clarity.

Define display
given a grid

Get next row

Print row

Have we
seen every

row?

No

Yes

end

Figure 9: The display function as a flowchart.

Next we define reverse, a function that takes in a single list and returns the same list with its
elements in reversed order. Python has the built-in command list.reverse(); however, this
command is problematic. list.reverse() is an in-place function, it reverses the contents of
the list itself instead of returning a reversed version, and therefore returns None. If we wanted to
check the properties of the reverse of a list using list.reverse(), we would have to reverse
the list again to return it to its original state. Calling list.reverse() in another function call
or if statement is also a bad idea, since None is returned, not the reversed list. An example of
this issue is shown below.

2.3 SUB-FUNCTIONS 11

>>> L = [1,2,3,4]
>>> L.reverse()
>>> L
[4,3,2,1]
>>> print(L.reverse())
None

We want the function to simply return the reversed list without changing the list itself. For that,
we define reverse. reverse creates an empty list rev to fill and return. A for loop moves
backwards through the list and appends its elements to rev. After the loop is over, rev is re-
turned as a completely reversed version of the original list. See the following example, as well as
Figure 10 for the flowchart.

>>> reverse([])
[]
>>> reverse([1])
[1]
>>> L = [1,2,3,4]
>>> reverse(L)
[4,3,2,1]
>>> L
[1,2,3,4]
>>> print(reverse(L))
[4,3,2,1]

The next set of functions find the nodes above, below, left, and right of a given node. There is no
need to find diagonal neighbors since diagonal travel is impossible (there are no diagonal links).
There is one neighbor function for each direction (north, south, east, and west). Using the north
function as an example, the function takes the row and column of the node as inputs and checks
if the neighbor above is on the grid. If the node is on the top row, there is no higher row, so the
function returns False. If False is not returned, the neighbor exists, so the function will return
the north neighbor. The neighbor functions are named N, S, E, and W (refer to Figure 11 for the
flowchart).

2.3 SUB-FUNCTIONS 12

Define reverse
given a list

Reverse list
starts empty

Get next number
from range 1 to
length of list +1

Append the
negative index of
that number to the

reverse list

Is the loop
over?

Yes

return reversed list

No

Figure 10: The reverse function as a flowchart.

>>> N(0,0)

>>> N(2,1)
6
>>> S(2,1)
14
>>> E(2,1)
11
>>> W(2,1)
9

2.3 SUB-FUNCTIONS 13

Define neighbor
functions

(N,S,E,W) given
the row and

column of a node

Is the
neighbor on the

grid?
Noreturn None Yes

return the
neighbor

Figure 11: The neighbor functions as a flowchart.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 12: The neighbors of node 10 in a 4× 4 grid.

Note that the colors in the snippet above only exist to connect the returns of the functions to the
neighbors on the grid (Figure 12). Using these colors we can see how the neighbor functions view
the grid when called on (2,1). Meaning the first column of the second row in grid (counting rows
and columns from 0), which is node 10.

We need to find our paths before verifying if they are hamcycles. To find our paths, we create
nodeType. When called, nodeType creates a list of the four neighbor functions, named fcns,
and sets score, the number of neighbors found, to 0. The function iterates through fcns and
applies the current neighbor function to the row and column that was provided. If the neighbor
exists, score increases by 1. Once the iterating is over, score is checked to see if it is 2, 3, or 4.
nodeType returns corner, edge, or center, respectively based on the result (see Figure 13 for the
flowchart).

2.3 SUB-FUNCTIONS 14

Define nodeType
given the row and
column of a node

Create list with all
four neighbor

functions

Number of
neighbors

(score) starts as
0

Does
the neighbor

exist?
Yes Increase score by

1

No

Have we
seen every
neighbor?

Yes

No

Is the score 2? Yes return 'corner'

No

Is the score 3? Yes return 'edge'

No

Is the score 4? Yes return 'center'

Get next
neighbor

Figure 13: The nodeType function as a flowchart.

2.3 SUB-FUNCTIONS 15

Last of the functions is checkUnique, to see if all elements in a given list are unique. When
called, seen, the list of elements seen by the function, is created empty. The function gets the
next element from the input list and checks if it is in seen. If the element has been seen before,
the function terminates and returns False. Otherwise, the element is appended to seen and the
next element is checked. If the loop has gone through every element, then it means none of those
elements triggered a return, so the function returns True (see Figure 14 for the flowchart).

>>> checkUnique([1,1])
False
>>> checkUnique(["hello", "hello"])
False
>>> checkUnique([1,2,3,4,5,4,7])
False
>>> checkUnique([])
True
>>> checkUnique([1])
True
>>> checkUnique(["hello", "h"])
True
>>> checkUnique([1,2,3,4])
True

Define
checkUnique

given a list

Get next list
element

Has it been
seen before? Yes return FalseNo

Append element
to list of seen

elements

Are
we at the
end of the

list?

Yesreturn True No

Figure 14: The checkUnique function as a flowchart.

2.4 HAMSQUARES FUNCTION 16

2.4 HamSquares Function

With the fallback and sub-functions now defined, we can move on to the meat of HamSquares.
A hamcycle travels through every node on the grid and ends where it starts, and therefore any
hamcycle in list-form will be m2 + 1 elements long. Using m = 4 as our example, the hamcycle
list will be 17 elements long. HamSquares is a brute force function and must find every possible
path (not necessarily Hamiltonian) that can be made in 17 moves, and then verify which of those
paths are hamcycles. To find every path we must find every way to travel the graph.

We start again with fcns, as well as two new variables, starts and dests. dests is the list
of nodes one can travel to from a given node. starts is every possible start position, meaning
every node in grid, therefore starts = n (where n is the list of natural numbers up to m2).
Once again we use a loop to find every node. For each node, the list neighbors starts empty,
and is populated by the neighbors of the current node, which are found by looping through
fcns. neighbors is then appended to dests. Once this process is completed for every node:

starts = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

dests =

[[5 , 2]] ,
[6 , 3 , 1] ,
[7 , 4 , 2] ,
[8 , 3 ,] ,
[1 , 9 , 6] ,
[2 , 10 , 7 , 5] ,
[3 , 11 , 8 , 6] ,
[4 , 12 , 7] ,
[5 , 13 , 10] ,
[6 , 14 , 11 , 9] ,
[7 , 15 , 12 , 10] ,
[19 , 14 ,] ,
[10 , 15 , 13] ,
[11 , 16 , 14] ,
[12 , 15]].

starts and dests now compliment each other. Any index in starts corresponds with the
same index in dests. Keep in mind that whenever we loop through each node, we find each
node in the same order every time. For example, for the start node 1 (index 0 in starts), the
possible destinations (neighbors) are 5 and 2 (index 0 in dests). If the start node is 9, the des-
tinations are 5, 13, and 10. Now we can zip starts and dests into a dictionary named tree.
Calling a node from tree will return its neighbors. Therefore the contents of tree will be

2.4 HAMSQUARES FUNCTION 17

1: [5 , 2]
2: [6 , 3 , 1]
3: [7 , 4 , 2]
4: [8 , 3]
5: [1 , 9 , 6]
6: [2 , 10 , 7 , 5]
7: [3 , 11 , 8 , 6]
8: [4 , 12 , 7]
9: [5 , 13 , 10]

10: [6 , 14 , 11 , 9]
11: [7 , 15 , 12 , 10]
12: [8 , 16 , 11]
13: [9 , 14]
14: [10 , 15 , 13]
15: [11 , 16 , 14]
16: [12 , 15].

A dictionary like tree has two parts: the list of keys and the list of values. Each key has an asso-
ciated value. Calling a key in a dict is the same as calling an index in a list; instead of returning
the item in that index, the value is returned. In the case of tree, the keys are the nodes and the
values are the respective neighbors (see Figure 15 for the flowchart).

>>> L = [1,2,3,4] # a list
>>> L[1] # index 1
2
>>> L[3] # index 3
4
>>> T = {1:3, 4:2} # a dictionary linking 1 to 3 and 4 to 2
>>> T[1] # call value of key 1
3
>>> T[4] # call value of key 4
2

2.4 HAMSQUARES FUNCTION 18

Get next node

Append list of
neighbors to list of
lists of neighbors

Append node to
list of nodes

Zip nodes and
neighbors into tree

dictionary

Get
neighbors of

the node

List of lists of
neighbors starts

empty

Have we
seen every

node?

Yes

No

Continue

Figure 15: The process of making tree as a flowchart.

2.4 HAMSQUARES FUNCTION 19

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16: The graph made using the relations between the keys and values in tree. This is identical to
Figure 6.

tree shows us the neighbors of each node. If we were to use tree to create a graph by link-
ing keys to their values, that graph would appear as the figure above, which is identical to
display(grid).

Note that we are not generating any graph using tree but we can use tree to create one. tree
provides the nodes (keys and values) and the links (relations between keys and values) necessary
for a grid to form. And thus, tree is the grid itself in dict form. The graph that tree creates
is undirected and gives us no way to decide what path to take. The graph, as shown above, is
identical to Figure 6, which is how HamSquares already views it. To describe a single possible
path, we need a directed graph. Specifically, we need all possible graphs where each link can
only be traversed in a single direction. These graphs would be one to one instead of one to many,
which means that every node is directed to one neighbor.

Creating these graphs brings us to the next phase of the HamSquares function. We start with the
empty list neighbornums, destined to become a list of lists. The lists within neighbornums
will be a mix of [0,1], [0,1,2], and [0,1,2,3]. The decision of which of these three lists to append lies
on the type of each node. By calling nodeType on each node, we append one of the three lists
depending on the result. If nodeType returns corner, edge, or center, we append [0,1], [0,1,2], or
[0,1,2,3], respectively. [0,1] is the list form of range(2), 2 being the number of neighbors that a
corner has. Similarly, [0,1,2] is the list form of range(3), 3 being the number of neighbors that
an edge has. Centers follow the same rule and corresponds with [0,1,2,3]. Once this process is
complete, neighbornums will be

[[0, 1], [0, 1, 2], [0, 1, 2], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2],

[0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2], [0, 1], [0, 1, 2], [0, 1, 2], [0, 1]].

With neighbornums initialized, we can create every possible directed graph. neighbornums is
currently similar to dests in the sense that it tells us the type of each node but does not specify
any paths. For this, we make the first and last call of itertools.product, which will find

2.4 HAMSQUARES FUNCTION 20

every combination of list elements from neighbornums. In a practical sense,
itertools.product(neighbornums) pulls one element out of each sublist in neighbornums
and finds every possible combination of single elements from each sublist. The results are saved
as the list paths (see Figure 17 for the flowchart). Referring back to Section 1.3, 26, 873, 856 paths
are being generated if m = 4. Since there are no hamcycles for grids with an odd side length, to
spare time, it is more efficient to immediately return None if m is odd.

Get next node

Call
nodeType on

the node

Is 'corner'
returned?

Yes Append [0,1] to
neighbornums

List of lists of
neighbornums
starts empty

Is 'edge'
returned?

Yes Append [0,1,2] to
neighbornums

Is 'center'
returned?

Yes Append [0,1,2,3]
to neighbornums

No

Have we
seen every

node?
Yes

Call itertools
on

neighbornums
to get all
possible

trees

No

No

No

Continue

Figure 17: The process of making paths as a flowchart.

Each sublist in paths is the blueprint for a directed graph, where arriving on one node means

2.4 HAMSQUARES FUNCTION 21

that we can only travel to one other node. Using a loop, we find every path in paths. The first
element in paths is [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], meaning that taking the 0th
element from each sublist in neighbornums is being used to create the graph. This is zipped
with every node to create simptree, the 1 to 1 dict we are looking for. Visually, if the first path
is all 0s, the values in simptree are the neighbors highlighted in pink, and each node is a key.

0 1 2 3

1: [5 , 2] 0

2: [6 , 3 , 1] 0

3: [7 , 4 , 2] 0

4: [8 , 3] 0

5: [1 , 9 , 6] 0

6: [2 , 10 , 7 , 5] 0

7: [3 , 11 , 8 , 6] 0

8: [4 , 12 , 7] 0

9: [5 , 13 , 10] 0

10: [6 , 14 , 11 , 9] 0

11: [7 , 15 , 12 , 10] 0

12: [8 , 16 , 11] 0

13: [9 , 14] 0

14: [10 , 15 , 13] 0

15: [11 , 16 , 14] 0

16: [12 , 15]. 0

1: 5

2: 6

3: 7

4: 8

5: 1

6: 2

7: 3

8: 4

9: 5

10: 6

11: 7

12: 8

13: 9

14: 10

15: 11

16: 12

2.4 HAMSQUARES FUNCTION 22

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 18: The directed graph created by simptree, where path is
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. Every node links to exactly one neighbor.
This graph is not a hamcycle.

2.4 HAMSQUARES FUNCTION 23

Figure 18 is the corresponding directed graph created by simptree. Now being directed, we
can check if each graph made by simptree contains a hamcycle.

Here is another iteration of simptree where path = [0,2,0,1,2,3,1,0,1,0,3,2,0,1,1,0].
The resulting directed graph is shown in Figure 19.

0 1 2 3

1: [5 , 2] 0

2: [6 , 3 , 1] 2

3: [7 , 4 , 2] 0

4: [8 , 3] 1

5: [1 , 9 , 6] 2

6: [2 , 10 , 7 , 5] 3

7: [3 , 11 , 8 , 6] 1

8: [4 , 12 , 7] 0

9: [5 , 13 , 10] 1

10: [6 , 14 , 11 , 9] 0

11: [7 , 15 , 12 , 10] 3

12: [8 , 16 , 11] 2

13: [9 , 14] 0

14: [10 , 15 , 13] 1

15: [11 , 16 , 14] 1

16: [12 , 15] 0

1: 5

2: 1

3: 7

4: 3

5: 6

6: 5

7: 11

8: 4

9: 13

10: 6

11: 10

12: 11

13: 9

14: 15

15: 16

16: 12

2.4 HAMSQUARES FUNCTION 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 19: Another iteration of simptree as a graph, where path is [0,2,0,1,2,3,1,0,1,0,3,2,0,1,1,0].
This graph is not a hamcycle.

Here is a final example which results in a hamcycle. path in this case is [1,1,1,0,0,1,3,1,0,1,0,1,0,2,0,1].

0 1 2 3

1: [5 , 2] 1

2: [6 , 3 , 1] 1

3: [7 , 4 , 2] 1

4: [8 , 3] 0

5: [1 , 9 , 6] 0

6: [2 , 10 , 7 , 5] 1

7: [3 , 11 , 8 , 6] 3

8: [4 , 12 , 7] 1

9: [5 , 13 , 10] 0

10: [6 , 14 , 11 , 9] 1

11: [7 , 15 , 12 , 10] 0

12: [8 , 16 , 11] 1

13: [9 , 14] 0

14: [10 , 15 , 13] 2

15: [11 , 16 , 14] 0

16: [12 , 15]. 1

2.4 HAMSQUARES FUNCTION 25

1: 2

2: 3

3: 4

4: 8

5: 1

6: 10

7: 6

8: 12

9: 5

10: 14

11: 7

12: 16

13: 9

14: 13

15: 11

16: 15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 20: Another incarnation of simptree in graph form, where path is
[1,1,1,0,0,1,3,1,0,1,0,1,0,2,0,1]. This graph is a hamcycle.

Since this is a loop, simptree will change every time, and so will the graph that it will practically
create. Once the current simptree is formed, we traverse through it. A hamcycle visits every
node, so any hamcycle in list form (if the first element is the last) will be m2 + 1 elements long.
The first element of this list will always be 1, since we always start traversing the list from node
1. With the first element always decided, we need to make m2 moves to fully traverse simptree.
Using a for loop through m2 steps will allow us to make m2 moves. First, we summon three new
variables: hamcycles, queue, and node. hamcycles is an empty list that will contain all of the
hamcycles we find. queue is an empty list that will contain the current path we make, and will
be cleared once we create the next simptree. node is the current node we are on, which begins
as 1. Using simptree, we travel to the next node and append that node to queue. Once the
loop is over, we must check if queue is a hamcycle. In essence, we traverse simptree starting

2.4 HAMSQUARES FUNCTION 26

from 1, moving to whichever node it tells us too, and fill queue with our positions.

We first see if checkUnique(queue[1:]) returns True. Calling checkUnique on the whole
queue will always return False even if queue is a hamcycle, since if queue is a hamcycle, there
is a 1 at the start and end. So we must call checkUnique on queue minus its first element.
If True is returned, we see if the last element in queue is 1. If so, we make our final check.
Hamcycles are closed undirected graphs, with no starting point nor direction. Each queue we
make is directed, but a hamcycle is undirected, so if we find a queue that is a hamcycle, we must
undirect it when we plot it (which is as simple as not placing any arrows on the links). An issue
arises here: using m = 2 for simplicity, there are 2 cycles: [1,2,4,3,1] and [1,3,4,2,1]. The first cycle
as a directed graph would be

1 2

3 4

And the second cycle would be

1 2

3 4

Removing the direction from both graphs gives

1 2

3 4

Both cycles are identical when stripped of their directions, and will result in duplicate plots.
Since hamcycles are not directed, [1,2,4,3,1] and [1,3,4,2,1] must be counted as the same hamcy-
cle. To prevent duplicates, we must check if queue is already in hamcycles, more specifically,
the reverse of queue, since a path going clockwise will look the same as a path going counter-
clockwise if both are undirected. This is why we defined reverse to give us the reverse of any
list. If reverse(queue) is in hamcycles, then queue is a duplicate and is not appended to
hamcycles. If reverse(queue) is not in hamcycles, then queue is unique and is appended
to hamcycles (see Figure 21 for the flowchart).

2.4 HAMSQUARES FUNCTION 27

Get next node

Starting node and first
position in queue is 1.

List of hamcycles starts
empty

Does
checkUnique(queue)

return True?

Yes

Is 1 the last
element in the

queue?

Get next tree

Use the original
dict to append the
same index in the
chosen tree to the

simplified dict

Simplified tree
starts empty

Has every
node been
checked?

No

Continue through
range m squared

Yes

Use simplified tree
to travel to next
node. Append
next node to

queue

Is the loop
over?

No

Yes

No
Have we

gone through
every tree?

No

No

No

Continue

Yes

Is reverse(queue)
already in hamcycles?Yes

No

Append queue to
hamcycles

Figure 21: The process of populating hamcycles as a flowchart.

2.4 HAMSQUARES FUNCTION 28

Lastly, we need to show what the hamcycles look like in the grid. Which requires
matplotlib.pyplot’s ability to plot. The program refers to matplotlib.pyplot as plt. To
save the images onto the local machine, we need to make sure that each plot has a different file
name or else only the last plot will remain (since the file will refresh with each plot). To save
different files, we create the variable plot: starting as 0, this variable will increase every time we
generate a plot. To generate the plots, we loop through HamSquares. With every loop, we get
the next element from HamSquares. The lists x and y start empty. Lopping through every node,
we append the column and row to x and y respectively. Once x and y are fully populated, we
can use plt.plot() to plot x and y. This plot alone is the hamcycle itself. We then plot the
grid points on top of the cycle to clarify the positions of each node, as well as set the aspect ratio
to 1:1 and remove tick marks. Once the plot is made, we save the figure with m and plot in its
name, and then clear the figure to have a blank slate for the next plot. The directory looks like
Users/user/Desktop/cycle[m]-[plot].png (see Figure 22 for the flowchart). Once every
cycle has been plotted, we can return display(hamcycles) as the final result in the shell.

2.4 HAMSQUARES FUNCTION 29

Number of plots
start as 0

Get next hamcycle

Increase plots by
1

Lists of x and y
positions start

empty

Get next node

Append x of node
to x and y of node

to y

Have we
seen every

node?

Yes

Use x and y
to plot cycle

Plot the
nodes

Set limits

Remove x
and y ticks

Save figure

Clear figure

Have we
plotted every

cycle?

No

No

Yes

Continue

Figure 22: The process of plotting each cycle as a flowchart.

2.4 HAMSQUARES FUNCTION 30

With every portion of HamSquares demystified, a full (but simplified) version of the full function
can be expressed in a flowchart (see Figure 23).

Define hamcycle
given the side

length input "m"

Is the input a
positive even?

Noreturn None

Create tree of
possible

places to go
given any

node

Get all
possible

trees

Create and
traverse
simplified

trees

Create grid with
numbered nodes
ranging from 1 to

m squared

Yes

Define neighbor
functions

Define
checkUnique

Define nodeType Define display

Import
itertools

return
display(hamcycles)

Plot cycles

Figure 23: A simplified form of the HamSquares function as a flowchart.

2.5 RESULTS FOR THE 2× 2 GRID 31

2.5 Results for the 2× 2 Grid

>>> HamSquares(2)
There is 1 Hamiltonian cycle in a square grid of side length 2.
[1,3,4,2,1]

When HamSquares(2) was run on a macOS version 10.15.4 with 16GB RAM/2.3 GHz Intel
Quad-Core i7, the running time was roughly half of a second.

Figure 24: The hamcycle [1,3,4,2,1].

2.6 Results for the 4× 4 Grid

>>> HamSquares(4)
There are 6 Hamiltonian cycles in a square grid of side length 4.
[1, 5, 9, 13, 14, 15, 16, 12, 8, 4, 3, 7, 11, 10, 6, 2, 1]
[1, 5, 9, 13, 14, 10, 11, 15, 16, 12, 8, 4, 3, 7, 6, 2, 1]
[1, 5, 9, 13, 14, 10, 6, 7, 11, 15, 16, 12, 8, 4, 3, 2, 1]
[1, 5, 9, 13, 14, 15, 16, 12, 11, 10, 6, 7, 8, 4, 3, 2, 1]
[1, 5, 6, 10, 9, 13, 14, 15, 16, 12, 11, 7, 8, 4, 3, 2, 1]
[1, 5, 6, 7, 11, 10, 9, 13, 14, 15, 16, 12, 8, 4, 3, 2, 1]

When HamSquares(4) was run on the same machine described in the results for 2× 2, it took
about one and a half minutes to execute completely.

2.6 RESULTS FOR THE 4× 4 GRID 32

Figure 25: The hamcycle [1, 5, 9, 13, 14, 15, 16, 12, 8, 4, 3, 7, 11, 10, 6, 2, 1].

Figure 26: The hamcycle [1, 5, 9, 13, 14, 10, 11, 15, 16, 12, 8, 4, 3, 7, 6, 2, 1].

2.6 RESULTS FOR THE 4× 4 GRID 33

Figure 27: The hamcycle [1, 5, 9, 13, 14, 10, 6, 7, 11, 15, 16, 12, 8, 4, 3, 2, 1].

Figure 28: The hamcycle [1, 5, 9, 13, 14, 15, 16, 12, 11, 10, 6, 7, 8, 4, 3, 2, 1].

2.6 RESULTS FOR THE 4× 4 GRID 34

Figure 29: The hamcycle [1, 5, 6, 10, 9, 13, 14, 15, 16, 12, 11, 7, 8, 4, 3, 2, 1].

Figure 30: The hamcycle [1, 5, 6, 7, 11, 10, 9, 13, 14, 15, 16, 12, 8, 4, 3, 2, 1].

	Introduction
	The Königsberg Bridges
	Eulerian & Hamiltonian Cycles
	Number of Directed Graphs
	Time Complexity

	Pseudocode for Hamiltonian Cycles
	Why We Use Pseudocode
	Fallback & Initialization
	Sub-Functions
	HamSquares Function
	Results for the 2 2 Grid
	Results for the 4 4 Grid

